
TRLC Static Checker

Florian Schanda

November 7, 2023

Motivation

• TRLC check expressions are executable
• TRLC language defines certain run-time errors

• Null dereference
• Division by zero
• Array out-of-bounds access
• Arithmetic over- and underflow1

• The Python reference implementation is safe (i.e. throws errors)

• A fast C implementation might not be

1Not checked (yet) because reference implementation uses arbitrary precision arithmetic.

Example

type Requirement {

description optional String

safety_relevant Boolean

}

checks Requirement {

len(description) >= 10, "description too short"

}

$ trlc.py --verify foo.rsl

len(description) >= 10, "description too short"

^^^^^^^^^^^ foo.rsl:9: issue: expression could be null [vcg-evaluation-of-null]

| example record_type triggering error:

| Requirement bad_potato {

| /* description is null */

| safety_relevant = false

| }

Example

type Requirement {

description optional String

safety_relevant Boolean

}

checks Requirement {

len(description) >= 10, "description too short"

}

$ trlc.py --verify foo.rsl

len(description) >= 10, "description too short"

^^^^^^^^^^^ foo.rsl:9: issue: expression could be null [vcg-evaluation-of-null]

| example record_type triggering error:

| Requirement bad_potato {

| /* description is null */

| safety_relevant = false

| }

Is this really so hard?
• This seems obvious enough...

• We could detect that and say “always prefix with implies”

• But it gets tricky complex quickly

type Requirement {

top_level Boolean

description optional String

}

checks Requirement {

top_level implies description != null ,

"top level requirements need a description"

}

type Top_Level_Requirement extends Requirement {

freeze top_level = true

}

checks Top_Level_Requirement {

len(description) >= 10, "too short"

}

Is this really so hard?
• This seems obvious enough...

• We could detect that and say “always prefix with implies”

• But it gets tricky complex quickly

type Requirement {

top_level Boolean

description optional String

}

checks Requirement {

top_level implies description != null ,

"top level requirements need a description"

}

type Top_Level_Requirement extends Requirement {

freeze top_level = true

}

checks Top_Level_Requirement {

len(description) >= 10, "too short"

}

Any complicated semantics can surprising

Top_Level_Requirement bad_potato {}

Will produce:

$ trlc.py foo.rsl foo.trlc

Top_Level_Requirement bad_potato {

^^^^^^^^^^ foo.trlc:3: check error: top level requirements

need a description

Top_Level_Requirement bad_potato {

^^^^^^^^^^ foo.trlc:3: error: input to unary expression

len(description) (foo.rsl:18) must not be null

Should have made the first check a fatal check to prevent execution!

Any complicated semantics can surprising

Top_Level_Requirement bad_potato {}

Will produce:

$ trlc.py foo.rsl foo.trlc

Top_Level_Requirement bad_potato {

^^^^^^^^^^ foo.trlc:3: check error: top level requirements

need a description

Top_Level_Requirement bad_potato {

^^^^^^^^^^ foo.trlc:3: error: input to unary expression

len(description) (foo.rsl:18) must not be null

Should have made the first check a fatal check to prevent execution!

Linter
What is it

• Formal verification tool

• Covers all possible inputs, for all possible TRLC implementations

• Models TRLC types and semantics in SMTLIB

• Generates counter-examples or proofs of absence of run-time errors

Terminology

SAT (Boolean) satisfiability problem (NP-hard)

NP-hard Problem where checking a solution is fast but computing a solution is
non-polynomial in complexity (e.g. O(2n))

Undecidable Problem that cannot be solved by any algorithm

SMT SAT modulo theory, an extension of SAT with theories like integer or
float arithmetic

SMT Solver Tool to automatically solve SMT problems

SMTLIB Language to describe problems to an SMT solver

VC Verification condition (problem you need to solve to demonstrate
something, e.g. absence of run-time errors)

Terminology II

Sound Reasoning that does not miss bugs (i.e. no false negatives)

Complete Reasoning that does not have false alarms

Automatic Reasoning that does not require human intelligence as input

Over-approximate Analysis that is sound and automatic

Under-approximate Analysis that is complete and automatic

Deductive Analysis that is sound and complete

Linter
Building blocks

This would be impossible to just build from scratch, so we use tools:

• PyVCG (a low-level verification condition generator, built for TRLC initially but
could be useful elsewhere)

• CVC5 (a state of the art SMT solver)

Linter
Dataflow

Types and
Checks

Execution
Graph

SMTLIB VC

SMTLIB VC

SMTLIB VC

SMTLIB VC

...

CVC5 Messages

TRLC
(vcg.py)

PyVCG
TRLC

(vcg.py, errors.py)

SMTLIB
Some examples

(set-logic QF_NIA)

(set-option :produce-models true)

(declare-const a Int)

(declare-const b Int)

(declare-const result Int)

(assert (= result

(* a b)))

(check-sat)

(get-value (a))

(get-value (b))

(get-value (result))

sat

((a 0))

((b 0))

((result 0))

SMTLIB
Some examples

(set-logic QF_NIA)

(set-option :produce-models true)

(declare-const a Int)

(declare-const b Int)

(declare-const result Int)

(assert (= result

(* a b)))

(check-sat)

(get-value (a))

(get-value (b))

(get-value (result))

sat

((a 0))

((b 0))

((result 0))

SMTLIB
Some examples

(set-logic QF_NIA)

(set-option :produce-models true)

(declare-const a Int)

(declare-const b Int)

(declare-const result Int)

(assert (= result

(* a b)))

(assert (= result 42))

(check-sat)

(get-value (a))

(get-value (b))

(get-value (result))

sat

((a (- 2)))

((b (- 21)))

((result 42))

SMTLIB
Some examples

(set-logic QF_NIA)

(set-option :produce-models true)

(declare-const a Int)

(declare-const b Int)

(declare-const result Int)

(assert (= result

(* a b)))

(assert (= result 42))

(check-sat)

(get-value (a))

(get-value (b))

(get-value (result))

sat

((a (- 2)))

((b (- 21)))

((result 42))

SMTLIB
Some examples

(set-logic QF_NIA)

(set-option :produce-models true)

(declare-const a Int)

(declare-const b Int)

(declare-const result Int)

(assert (= result

(* a b)))

(assert (= result 42))

(assert (= a 4))

(check-sat)

(get-value (a))

(get-value (b))

(get-value (result))

unsat

SMTLIB
Some examples

(set-logic QF_NIA)

(set-option :produce-models true)

(declare-const a Int)

(declare-const b Int)

(declare-const result Int)

(assert (= result

(* a b)))

(assert (= result 42))

(assert (= a 4))

(check-sat)

(get-value (a))

(get-value (b))

(get-value (result))

unsat

SMTLIB
How to prove something

Lets say we want to prove that x + 1 > x :
• First declare variables:

(declare-const x Int)

• Then define a goal:
(define-const goal Bool

(> (+ x 1)

x))

• Then assert that the goal is not true:
(assert (not goal))

• Then ask for a model:
(check-sat)

• If we get a model: we know it’s not (always) true and we have a specific
counter-example

• If we don’t: we know there are no counter-examples, i.e. the original goal is
always true

SMTLIB
How to prove something

Lets say we want to prove that x + 1 > x :
• First declare variables:

(declare-const x Int)

• Then define a goal:
(define-const goal Bool

(> (+ x 1)

x))

• Then assert that the goal is not true:
(assert (not goal))

• Then ask for a model:
(check-sat)

• If we get a model: we know it’s not (always) true and we have a specific
counter-example

• If we don’t: we know there are no counter-examples, i.e. the original goal is
always true

SMTLIB
How to prove something

Lets say we want to prove that x + 1 > x :
• First declare variables:

(declare-const x Int)

• Then define a goal:
(define-const goal Bool

(> (+ x 1)

x))

• Then assert that the goal is not true:
(assert (not goal))

• Then ask for a model:
(check-sat)

• If we get a model: we know it’s not (always) true and we have a specific
counter-example

• If we don’t: we know there are no counter-examples, i.e. the original goal is
always true

SMTLIB
How to prove something

Lets say we want to prove that x + 1 > x :
• First declare variables:

(declare-const x Int)

• Then define a goal:
(define-const goal Bool

(> (+ x 1)

x))

• Then assert that the goal is not true:
(assert (not goal))

• Then ask for a model:
(check-sat)

• If we get a model: we know it’s not (always) true and we have a specific
counter-example

• If we don’t: we know there are no counter-examples, i.e. the original goal is
always true

SMTLIB
How to prove something

Lets say we want to prove that x + 1 > x :
• First declare variables:

(declare-const x Int)

• Then define a goal:
(define-const goal Bool

(> (+ x 1)

x))

• Then assert that the goal is not true:
(assert (not goal))

• Then ask for a model:
(check-sat)

• If we get a model: we know it’s not (always) true and we have a specific
counter-example

• If we don’t: we know there are no counter-examples, i.e. the original goal is
always true

TRLC
Execution semantics

• Mostly just expressions (e.g. len(x) + len(y) > 10)
• Control flow is rare, but we have some:

• and, or, and implies (short-circuit semantics)
• range tests
• if expressions
• ordering of (fatal) checks inside a block
• checks from parent types before checks from extension

• Interesting cases:
• Execution order from checks from different blocks is unspecified
• Execution order inside quantifiers is unspecified
• Execution continues after (non-fatal) errors and warnings

TRLC
Execution semantics example

x != null implies x in 1 .. 10, "potato"

start x ̸= null

x ≥ 1

x ≤ 10

end

⊤

⊥

⊤

⊥

RTE check:
¬(x = null)

RTE check:
¬(x = null)

feasibility check:
∃x | ¬(x ̸= null =⇒ 1 ≤ x ≤ 10)

TRLC
Execution semantics example

x != null implies x in 1 .. 10, "potato"

start x ̸= null

x ≥ 1

x ≤ 10

end

⊤

⊥

⊤

⊥

RTE check:
¬(x = null)

RTE check:
¬(x = null)

feasibility check:
∃x | ¬(x ̸= null =⇒ 1 ≤ x ≤ 10)

TRLC
Execution semantics example

x != null implies x in 1 .. 10, "potato"

start x ̸= null

x ≥ 1

x ≤ 10

end

⊤

⊥

⊤

⊥

RTE check:
¬(x = null)

RTE check:
¬(x = null)

feasibility check:
∃x | ¬(x ̸= null =⇒ 1 ≤ x ≤ 10)

TRLC
Required tasks

• Build execution graph and model TRLC (TRLC with PyVCG)

• Annotate this graph with checks (TRLC with PyVCG)

• Generate VCs (PyVCG)

• Solve them (PyVCG with CVC5)

• Generate feedback to the user (TRLC with PyVCG)

TRLC
PyVCG

• PyVCG does all the graph and SMT stuff

• I decided to factor it out since it could be reusable for other projects

• I decided not to use Why32 or Boogie3 because I don’t like quantifiers

• I decided not to use GOTO4 because its somewhat annoying to work with and I
do need quantifiers and infinite integers

• (Also, I was extremely bored)

2https://why3.lri.fr
3https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language
4https://www.cprover.org/cbmc/

Modelling TRLC
Why

TRLC ̸= SMTLIB:

• TRLC is sequential and executable

• SMTLIB is declarative

• Types are different

• There are no “null” values in SMTLIB

Modelling TRLC
Null

• Optional components can be “null”

• Expressions generally can’t be (x + 1 itself cannot be null, but x could be)

• Quantification variables can’t be (in (forall x in y => x) the bound variable
x cannot be null, but y could be)

• Array members can’t be (although the whole array itself could be)

Modelling TRLC
Null

I considered two options:

• Make a datatype for everything: x = (isNull , actualValueOfX)

+ Very generic, easy to get right
- Requires re-implementation of all operations
- Has the smell of three-valued logic
- Might make quantifiers worse

• Make a separate value for everything: x = actualValueofX , valid x

- Requires more manual work when generating VCs
+ Probably way faster if you can optimise it away

I chose the second option.

Modelling TRLC
Null

How this looks like with x = y :

• There are four variables here:
• x and y
• valid x and valid y

• Semantics of equality are:

Equality On Null Null is only equal to itself.
Simple Relational Semantics The meaning of the relationship operators are the

usual.

• valid x = valid y ∧ (valid x =⇒ x = y)

Modelling TRLC
Null

How this looks like with x = y :
• There are four variables here:

• x and y
• valid x and valid y

• Semantics of equality are:

Equality On Null Null is only equal to itself.
Simple Relational Semantics The meaning of the relationship operators are the

usual.

• valid x = valid y ∧ (valid x =⇒ x = y)

Modelling TRLC
Null

How this looks like with x = y :
• There are four variables here:

• x and y
• valid x and valid y

• Semantics of equality are:

Equality On Null Null is only equal to itself.
Simple Relational Semantics The meaning of the relationship operators are the

usual.

• valid x = valid y ∧ (valid x =⇒ x = y)

Modelling TRLC
Null

How this looks like with x = y :
• There are four variables here:

• x and y
• valid x and valid y

• Semantics of equality are:

Equality On Null Null is only equal to itself.
Simple Relational Semantics The meaning of the relationship operators are the

usual.

• valid x = valid y ∧ (valid x =⇒ x = y)

Modelling TRLC
Null

• So x = y is valid x = valid y ∧ (valid x =⇒ x = y)

• If we know that y is not optional, we could simplify:
• Flip around: valid y = valid x ∧ (valid y =⇒ y = x)
• Substitute ⊤ for valid y : ⊤ = valid x ∧ (⊤ =⇒ y = x)
• Simplify: valid x ∧ y = x

• If we know that x is also not optional, we could simplify further: x = y

Modelling TRLC
Null

• So x = y is valid x = valid y ∧ (valid x =⇒ x = y)
• If we know that y is not optional, we could simplify:

• Flip around: valid y = valid x ∧ (valid y =⇒ y = x)

• Substitute ⊤ for valid y : ⊤ = valid x ∧ (⊤ =⇒ y = x)
• Simplify: valid x ∧ y = x

• If we know that x is also not optional, we could simplify further: x = y

Modelling TRLC
Null

• So x = y is valid x = valid y ∧ (valid x =⇒ x = y)
• If we know that y is not optional, we could simplify:

• Flip around: valid y = valid x ∧ (valid y =⇒ y = x)
• Substitute ⊤ for valid y : ⊤ = valid x ∧ (⊤ =⇒ y = x)

• Simplify: valid x ∧ y = x

• If we know that x is also not optional, we could simplify further: x = y

Modelling TRLC
Null

• So x = y is valid x = valid y ∧ (valid x =⇒ x = y)
• If we know that y is not optional, we could simplify:

• Flip around: valid y = valid x ∧ (valid y =⇒ y = x)
• Substitute ⊤ for valid y : ⊤ = valid x ∧ (⊤ =⇒ y = x)
• Simplify: valid x ∧ y = x

• If we know that x is also not optional, we could simplify further: x = y

Modelling TRLC
Null

• So x = y is valid x = valid y ∧ (valid x =⇒ x = y)
• If we know that y is not optional, we could simplify:

• Flip around: valid y = valid x ∧ (valid y =⇒ y = x)
• Substitute ⊤ for valid y : ⊤ = valid x ∧ (⊤ =⇒ y = x)
• Simplify: valid x ∧ y = x

• If we know that x is also not optional, we could simplify further: x = y

Modelling TRLC
Null

Final strategy:

• Introduce a new Boolean for each value indicating the validity

• Perform arithmetic on just the values, assuming validity is OK

• Perform validity checks on just the validity values

• Only place we mix is for the == and != operators

• Most of it can be simplified

Modelling TRLC
Null

A real example:

type T {

x optional Boolean

y optional Boolean

}

checks T {

x == y, "potato"

}

Modelling TRLC
Null

A real example:

; ; v a l u e f o r x d e c l a r e d on foo . r s l : 3 : 3
(declare-const |Foo.T.x.value| Bool)

(declare-const |Foo.T.x.valid| Bool)

; ; v a l u e f o r y d e c l a r e d on foo . r s l : 4 : 3
(declare-const |Foo.T.y.value| Bool)

(declare-const |Foo.T.y.valid| Bool)

; ; r e s u l t o f x == y at foo . r s l : 7 : 5
(define-const |tmp.1| Bool

(and (= |Foo.T.x.valid| |Foo.T.y.valid|)

(=> |Foo.T.x.valid| (= |Foo.T.x.value| |Foo.T.y.value|))))

Modelling TRLC
Execution graph and null

One more example:

type T {

x optional Integer

}

checks T {

x + 1 > x, "potato"

}

Requires more than one VC:

• VC1: Validity check for x on LHS

• We can then compute the value of x + 1 assuming it’s valid

• VC2: Validity check for x on RHS

• We can then compute the value of x + 1 > x assuming it’s valid

• We can now use the computed values to do something like check if it’s always true

Modelling TRLC
Execution graph and null

One more example:

type T {

x optional Integer

}

checks T {

x + 1 > x, "potato"

}

Requires more than one VC:

• VC1: Validity check for x on LHS

• We can then compute the value of x + 1 assuming it’s valid

• VC2: Validity check for x on RHS

• We can then compute the value of x + 1 > x assuming it’s valid

• We can now use the computed values to do something like check if it’s always true

Modelling TRLC
Execution graph and null

One more example:

type T {

x optional Integer

}

checks T {

x + 1 > x, "potato"

}

Requires more than one VC:

• VC1: Validity check for x on LHS

• We can then compute the value of x + 1 assuming it’s valid

• VC2: Validity check for x on RHS

• We can then compute the value of x + 1 > x assuming it’s valid

• We can now use the computed values to do something like check if it’s always true

Modelling TRLC
Execution graph and null

One more example:

type T {

x optional Integer

}

checks T {

x + 1 > x, "potato"

}

Requires more than one VC:

• VC1: Validity check for x on LHS

• We can then compute the value of x + 1 assuming it’s valid

• VC2: Validity check for x on RHS

• We can then compute the value of x + 1 > x assuming it’s valid

• We can now use the computed values to do something like check if it’s always true

Modelling TRLC
Execution graph and null

start

Assumption
(declare-const |Foo.T.x.value| Int)
(declare-const |Foo.T.x.valid| Bool)

Check
goal: |Foo.T.x.valid|

Assumption
(define-const |tmp.1| Int (+ |Foo.T.x.value| 1))

Check
goal: |Foo.T.x.valid|

Assumption
(define-const |tmp.2| Bool (> |tmp.1| |Foo.T.x.value|))

Check
goal: |tmp.2|

Assumption
(assert |tmp.2|)

Modelling TRLC
Execution graph and null

start

Assumption
(declare-const |Foo.T.x.value| Int)
(declare-const |Foo.T.x.valid| Bool)

Check
goal: |Foo.T.x.valid|

Assumption
(define-const |tmp.1| Int (+ |Foo.T.x.value| 1))

Check
goal: |Foo.T.x.valid|

Assumption
(define-const |tmp.2| Bool (> |tmp.1| |Foo.T.x.value|))

Check
goal: |tmp.2|

Assumption
(assert |tmp.2|)

; ; v a l u e f o r x d e c l a r e d on foo . r s l : 3 : 3
(declare-const |Foo.T.x.value| Int)

(declare-const |Foo.T.x.valid| Bool)

; ; v a l i d i t y check f o r x
(assert (not |Foo.T.x.valid|))

(check-sat)

Modelling TRLC
Execution graph and null

start

Assumption
(declare-const |Foo.T.x.value| Int)
(declare-const |Foo.T.x.valid| Bool)

Check
goal: |Foo.T.x.valid|

Assumption
(define-const |tmp.1| Int (+ |Foo.T.x.value| 1))

Check
goal: |Foo.T.x.valid|

Assumption
(define-const |tmp.2| Bool (> |tmp.1| |Foo.T.x.value|))

Check
goal: |tmp.2|

Assumption
(assert |tmp.2|)

; ; v a l u e f o r x d e c l a r e d on foo . r s l : 3 : 3
(declare-const |Foo.T.x.value| Int)

(declare-const |Foo.T.x.valid| Bool)

(assert |Foo.T.x.valid|)

; ; r e s u l t o f x + 1 at foo . r s l : 6 : 5
(define-const |tmp.1| Int

(+ |Foo.T.x.value| 1))

; ; v a l i d i t y check f o r x
(assert (not |Foo.T.x.valid|))

(check-sat)

Modelling TRLC
Execution graph and null

start

Assumption
(declare-const |Foo.T.x.value| Int)
(declare-const |Foo.T.x.valid| Bool)

Check
goal: |Foo.T.x.valid|

Assumption
(define-const |tmp.1| Int (+ |Foo.T.x.value| 1))

Check
goal: |Foo.T.x.valid|

Assumption
(define-const |tmp.2| Bool (> |tmp.1| |Foo.T.x.value|))

Check
goal: |tmp.2|

Check
goal: |tmp.2|

Assumption
(assert |tmp.2|)

; ; v a l u e f o r x d e c l a r e d on foo . r s l : 3 : 3
(declare-const |Foo.T.x.value| Int)

(declare-const |Foo.T.x.valid| Bool)

(assert |Foo.T.x.valid|)

; ; r e s u l t o f x + 1 at foo . r s l : 6 : 5
(define-const |tmp.1| Int

(+ |Foo.T.x.value| 1))

(assert |Foo.T.x.valid|)

; ; r e s u l t o f x + 1 > x at foo . r s l : 6 : 9
(define-const |tmp.2| Bool

(> |tmp.1| |Foo.T.x.value|))

; ; f e a s a b i l i t y check f o r x + 1 > x
(assert (not |tmp.2|))

(check-sat)

Modelling TRLC
Debugging options

You can see this for real using the --debug-vcg option:

• Generates a .pdf for the graph

• Generates a .smt2 file for each VC

Modelling TRLC
Types

We have these types in TRLC:

• Boolean

• Integer

• Decimal

• String (and Markup String)

• Enumerations

• User-defined records

• User-defined tuples

• Arrays consisting out of any of the above

Modelling TRLC
Types

We have these types in TRLC:

• Boolean (SMTLIB Bool)

• Integer (SMTLIB Int)

• Decimal

• String (and Markup String)

• Enumerations

• User-defined records

• User-defined tuples

• Arrays consisting out of any of the above

Modelling TRLC
Types

We have these types in TRLC:

• Boolean (SMTLIB Bool)

• Integer (SMTLIB Int)

• Decimal (SMTLIB Real, over-approximation)

• String (and Markup String)

• Enumerations

• User-defined records

• User-defined tuples

• Arrays consisting out of any of the above

Modelling TRLC
Types

We have these types in TRLC:

• Boolean (SMTLIB Bool)

• Integer (SMTLIB Int)

• Decimal (SMTLIB Real, over-approximation)

• String (and Markup String) (SMTLIB String, over-approximation for
Markup String)

• Enumerations

• User-defined records

• User-defined tuples

• Arrays consisting out of any of the above

Modelling TRLC
Types

We have these types in TRLC:

• Boolean (SMTLIB Bool)

• Integer (SMTLIB Int)

• Decimal (SMTLIB Real, over-approximation)

• String (and Markup String) (SMTLIB String, over-approximation for
Markup String)

• Enumerations (SMTLIB Datatypes)

• User-defined records

• User-defined tuples

• Arrays consisting out of any of the above

Modelling TRLC
Types

We have these types in TRLC:

• Boolean (SMTLIB Bool)

• Integer (SMTLIB Int)

• Decimal (SMTLIB Real, over-approximation)

• String (and Markup String) (SMTLIB String, over-approximation for
Markup String)

• Enumerations (SMTLIB Datatypes)

• User-defined records (SMTLIB Datatypes)

• User-defined tuples (SMTLIB Datatypes)

• Arrays consisting out of any of the above

Modelling TRLC
Types

We have these types in TRLC:

• Boolean (SMTLIB Bool)

• Integer (SMTLIB Int)

• Decimal (SMTLIB Real, over-approximation)

• String (and Markup String) (SMTLIB String, over-approximation for
Markup String)

• Enumerations (SMTLIB Datatypes)

• User-defined records (SMTLIB Datatypes)

• User-defined tuples (SMTLIB Datatypes)

• Arrays consisting out of any of the above (SMTLIB Sequence)

Modelling TRLC
Decimals

Decimals are annoying... There are no decimals in SMTLIB.

D ∈ Q ∈ R

• 0.3 is a decimal

• 1
3 is a rational (but not decimal)

•
√
2 is a real (but not rational, and also not a decimal)

• There are things true in D that are not true R: ∀x ∈ D | x + 1
3 ̸= 0

• There are things true in R that are not true D: ∃x ∈ R | x ∗ x = 2

Modelling TRLC
Decimals

Decimals are annoying... There are no decimals in SMTLIB.

D ∈ Q ∈ R

• 0.3 is a decimal

• 1
3 is a rational (but not decimal)

•
√
2 is a real (but not rational, and also not a decimal)

• There are things true in D that are not true R: ∀x ∈ D | x + 1
3 ̸= 0

• There are things true in R that are not true D: ∃x ∈ R | x ∗ x = 2

Modelling TRLC
Decimals

Decimals are annoying... There are no decimals in SMTLIB.

D ∈ Q ∈ R

• 0.3 is a decimal

• 1
3 is a rational (but not decimal)

•
√
2 is a real (but not rational, and also not a decimal)

• There are things true in D that are not true R: ∀x ∈ D | x + 1
3 ̸= 0

• There are things true in R that are not true D: ∃x ∈ R | x ∗ x = 2

Modelling TRLC
Decimals

Decimals are annoying... There are no decimals in SMTLIB.

D ∈ Q ∈ R

• 0.3 is a decimal

• 1
3 is a rational (but not decimal)

•
√
2 is a real (but not rational, and also not a decimal)

• There are things true in D that are not true R: ∀x ∈ D | x + 1
3 ̸= 0

• There are things true in R that are not true D: ∃x ∈ R | x ∗ x = 2

Modelling TRLC
Decimals

Decimals are annoying... There are no decimals in SMTLIB.

D ∈ Q ∈ R

• 0.3 is a decimal

• 1
3 is a rational (but not decimal)

•
√
2 is a real (but not rational, and also not a decimal)

• There are things true in D that are not true R: ∀x ∈ D | x + 1
3 ̸= 0

• There are things true in R that are not true D: ∃x ∈ R | x ∗ x = 2

Modelling TRLC
Decimals

Decimals are annoying... There are no decimals in SMTLIB.

D ∈ Q ∈ R

• 0.3 is a decimal

• 1
3 is a rational (but not decimal)

•
√
2 is a real (but not rational, and also not a decimal)

• There are things true in D that are not true R: ∀x ∈ D | x + 1
3 ̸= 0

• There are things true in R that are not true D: ∃x ∈ R | x ∗ x = 2

Modelling TRLC
Decimals

Options:

• Beg CVC5 developers for a Decimal extension (I tried)

• Model as a pair of integers value = a
b and say:

• ∃n ∈ N|n > 0 ∧ b = 10n

• This is awful because:
• N/R conversions
• power is basically unsupported
• existential quantification
• nonlinear division everywhere

Modelling TRLC
Decimals

Options:

• Beg CVC5 developers for a Decimal extension (I tried)
• Model as a pair of integers value = a

b and say:
• ∃n ∈ N|n > 0 ∧ b = 10n

• This is awful because:
• N/R conversions
• power is basically unsupported
• existential quantification
• nonlinear division everywhere

Modelling TRLC
Decimals

Options:

• Beg CVC5 developers for a Decimal extension (I tried)
• Model as a pair of integers value = a

b and say:
• ∃n ∈ N|n > 0 ∧ b = 10n

• This is awful because:
• N/R conversions
• power is basically unsupported
• existential quantification
• nonlinear division everywhere

Modelling TRLC
Decimals

Options:
• Rational with restricted precision value = a

b
• E.g. b ∈ {1, 10, 100, 1000, 10000, 100000} for 5 decimal digits
• This is an under-approximation (i.e. not sound)
• disjunctions everywhere

• Treat as real (over-approximation)
• Best performance
• You sometimes get impossible counter-examples

(This is what I chose.)

Modelling TRLC
Decimals

Options:
• Rational with restricted precision value = a

b
• E.g. b ∈ {1, 10, 100, 1000, 10000, 100000} for 5 decimal digits
• This is an under-approximation (i.e. not sound)
• disjunctions everywhere

• Treat as real (over-approximation)
• Best performance
• You sometimes get impossible counter-examples

(This is what I chose.)

Modelling TRLC
Decimals

Example of an incorrect counter-example:

type T {

a Decimal

}

checks T {

1.0 / (a + (1.0 / 3.0)) > 0.0, "potato"

}

1.0 / (a + (1.0 / 3.0)) > 0.0, "potato"

^ test2.rsl:8: issue: divisor could be 0.0 [vcg-div-by-zero]

| example record_type triggering error:

| T bad_potato {

| a = -1 / 3

| }

	Introduction
	Architecture and background
	Linter
	Terminology
	Dependencies
	Dataflow
	SMTLIB

	TRLC execution semantics
	TRLC VCG
	Modelling TRLC
	Modelling null
	Modelling the execution
	Debugging options
	Modelling types
	Approximating decimals

